Enhancing Sugarcane Disease Classification with Ensemble Deep Learning: A Comparative Study with Transfer Learning Techniques

نویسندگان

چکیده

Deep learning practices in the agriculture sector can address many challenges faced by farmers such as disease detection, yield estimation, soil profile etc. In this paper, classification for sugarcane plant and experimentation involved thereby is thoroughly discussed. Experimental results include performances of well-known existing transfer techniques proposed ensemble deep based architecture that incorporates stack two networks with one having level-wise spatial attention helping to provide better generalization. A Self-created database leaf diseases introduced research community through paper. It involves 5 categories a total 2569 images. Here, it observed best performing method, MobileNet-V2 shows an accuracy around 84% lowest number parameters whereas model reaching 86.53 % less epochs acceptable parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Transfer Learning Ensemble for Classification

Transfer learning algorithms typically assume that the training data and the test data come from different distribution. It is better at adapting to learn new tasks and concepts more quickly and accurately by exploiting previously gained knowledge. Deep Transfer Learning (DTL) emerged as a new paradigm in transfer learning in which a deep model offer greater flexibility in extracting high-level...

متن کامل

‏‎a comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation‎‏

هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...

15 صفحه اول

Machine Learning Classification Techniques: A Comparative Study

Machine learning is the study of computer algorithms that improve automatically with experience. In other words it is the ability of the computer program to acquire or develop new knowledge or skills from examples for optimising the performance of a computer or a mobile device. In this paper we apply machine learning techniques Bayes network, Logistic Regression, Decision Stump, J48, Random For...

متن کامل

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

Classification of Chest Radiology Images in Order to Identify Patients with COVID-19 Using Deep Learning Techniques

Background and Aim: Due to the important role of radiological images for identifying patients with COVID-19, creating a model based on deep learning methods was the main objective of this study. Materials and Methods: 15,153 available chest images of normal, COVID-19, and pneumonia individuals which were in the Kaggle data repository was used as dataset of this research. Data preprocessing inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Heliyon

سال: 2023

ISSN: ['2405-8440']

DOI: https://doi.org/10.1016/j.heliyon.2023.e18261